Novel class of difluorovinylphosphonate analogues of PEP

A parecida M. K awamoto*, ${ }^{*}$ and M alcolm M. C ampbell ${ }^{\text {b }}$
${ }^{\text {a }}$ Chemistry D ivision, Space A ctivity Institute, São J ose dos Campos, SP, B razil
${ }^{\mathrm{b}}$ School of Chemistry, U niversity of B ath, U K

Abstract

A new class of difluorovinylphosphonate analogues of PEP, 4,4-difluoro-4-(diethoxyphosphinoyl)-2-methylenebutanoic acid 15, methyl 4,4-difluoro-4-(diethoxyphosphinoyl)-2-methylenebutanoate 17, (E)- and (Z)-4,4-difluoro-4-(diethoxyphosphinoyl)but-2-enoic acid 14 and 4,4-difluoro-4-phosphono-2-methylenebutanoic acid 16 have been synthesized. M ethyl 3,3-difluoro-3-(diethoxyphosphinoyl)-2-hydroxy-2-methylpropionate 21 and the corresponding acid 3,3-difluoro-3-phosphono-2-hydroxy-2methylpropionic acid 23 , have also been synthesized. These compounds are designed to act as potential inhibitors in the shikimic acid pathway.

The unique physiological and physical properties of organofluorine compounds make them attractive for use as medicinal products, herbicides and polymers.
A lthough the replacement of a phosphate functional group with a phosphonate moiety in biologically important molecules constitutes an attractive strategy for the design of nonhydrolysable substrate analogues as inhibitors or alternate substrate analogues, and for enzymes that process naturally occurring phosphates, it has been proposed that the corresponding 1,1-difluoroalkylphosphonate should be a superior replacement since this surrogate should more accurately mimic the steric and polar character of the phosphatefunction. ${ }^{1}$
N ieschalk et al. ${ }^{2}$ described the synthesis of monofluoro- and difluoro-methylenephosphonate analogues of sn -glycerol-3phosphate as substrates for glycerol-3-phosphate dehydrogenase. The synthesis of fluorophosphonate derivatives of $\mathrm{N}{ }^{9}$-benzylguanine as potent, slow-binding multisubstrate analogue inhibitors of purine nucleoside phosphorylase has been described by Halazy et al. ${ }^{3}$

Small peptides containing the non-hydrolysable phosphotyrosyl mimetic difluorophosphonomethylphenylalanine ($\mathrm{F}_{2} \mathrm{Pmp}$) have been shown to be extremely potent proteintyrosine phosphatase inhibitors, with the fluorines increasing inhibitory potency 1000 -fold relative to the unfluorinated species. Bien Yeet al. ${ }^{4}$ reported the synthesis of one such inhibitor [difluoro(4-hydroxy-2-naphthyl)methyl]phosphonic acid, which is prepared in 12 steps from commercially available 1,3dihydroxynaphthalene.

Phosphoenol pyruvate (PEP) plays an important role in the shikimic acid pathway for the formation of 5 -enolpyruvyl-shikimic-3-phosphate (5 -EPS-3-P) 5, which is enzymatically synthesized by the nucleophilic attack of the $5-\mathrm{OH}$ of the shikimate 3 -phosphate (S3P) on the C-2 position of PEP with the elimination of phosphate ${ }^{5}$ (Fig .1). The reaction proceeds through a tetrahedral intermediate 3, which has previously been isolated and characterized by A nderson et al. ${ }^{6}$ Structural mimics of this intermediate are indeed potent EPSPS inhibitors. ${ }^{7}$
The tetrahedral intermediate 3, although stable under alkaline conditions, is hydrolysed readily at neutral pH , although the configuration of the ketal carbon has not been elucidated. ${ }^{5}$ It also decomposes under acidic conditions to form pyruvate and S3P. ${ }^{6}$

Replacement of the C-0-P group in the phosphoenol pyruvate by $\mathrm{C}-\mathrm{CF}_{2}-\mathrm{P}$ is one strategy used to stabilize the ketal phosphate structure of the tetrahedral intermediate 3, and gives some stable analogues that could be potential inhibitors of EPSP synthase
There are a variety of PEP analogues that have been exam-

Fig. 1 Proposed mechanism of 5-EPS-3-P synthase
ined as alternate substrates and/or inhibitors of 5-EPS-3-P synthase. Walker and Jones ${ }^{8}$ reported the first evidence that (Z)3 -fluoro-PEP 6 functions as a pseudo substrate for 5-EPS-3-P synthase, producing in one step the unexpected monofluoro analogue 7 , which remains tightly bound at the enzyme site.

Philion et al. ${ }^{9}$ described the synthesis of disodium salt $\mathbf{8}$,

which is an isopolar and isosteric analogue of PEP. A ccording to the authors this analogue was envisioned to be a potential M ichael acceptor which could bind irreversibly to an enzyme active site for which PEP is a substrate.
PEP has also been tested as an inhibitor of prolidase by Radzicka and Wolfenden. ${ }^{10}$ They described the action of derivatives of phosphoenol pyruvic acid-fluorinated, chlorinated or brominated-as strong competitive inhibitors of prolidase, which is an enzyme present in microorganism and mammalian tissues, where it is believed to catalyse terminal degradation of exogenous proteins. In humans, a deficiency of prolidase results in a complex clinical syndrome involving mental retardation.
(EtO)
$\mathrm{RT}=$ room temperature

Scheme 1

This work describes the synthesis of a new class of difluorovinylphosphonate analogues of PEP: 4,4-difluoro-4-(diethoxyphosphinoyl)-2-methylenebutanoic acid 15, methyl 4,4-difluoro-4-(diethoxyphosphinoyl)butanoate 17, (E)-4,4 difluoro-4-(diethoxyphosphinoyl)but-2-enoic acid 14 and (Z)-4,4-difluoro-4-(diethoxyphosphinoyl)but-2-enoic acid 12 and 4,4-difluoro-4-(diethoxyphosphinoyl)-2-methylenebutanoic acid 16. Compounds 14, $\mathbf{1 6}$ and $\mathbf{1 7}$ are expected to act as effective inhibitors of EPSP synthase, and compound 15 is expected to act as a potential inhibitor of prolidase

Results and discussion

The proposed routes to the targets compounds 12-18 are outlined in Scheme 1.

Reaction with zinc dust of diethyl bromodifluoromethylphosphonate 10, prepared from triethyl phosphite 9 and dibromodifluoromethane, ${ }^{11}$ gave the stable [(diethoxyphosphinoyl)difluoromethyl]zinc bromide 11^{12} which by four different routes afforded compounds 12-18 respectively.

Reaction of 11 with 2-bromoacrylic acid gave the novel intermediate, 2-bromo-4,4-difluoro-4-(diethoxyphosphinoyl)butanoic acid 13, which was treated with DBU in dichloromethane to yield compound 14. The E isomer was formed, and this might be the result of elimination from N ewman conformation \mathbf{A}, rather than \mathbf{B} (Fig. 2), although there are mechanisms for the conversion of the Z isomer into the E isomer.

anti

A

gauche
B

Fig. 2
In the gauche conformation the three groups $\left[\mathrm{Br}, \mathrm{CO}_{2} \mathrm{H}\right.$ and $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CF}_{2}$] are near each other, resulting in a steric strain and less stable conformation.

The NOE experiments confirmed the E configuration of compound 14. Thus, irradiation of $2 \alpha-\mathrm{H}(\delta 6.40)$ had no effect on the $3 \beta-\mathrm{H}$ resonance. Furthermore, irradiation at the

Table 1

Compound	2α Vinylic proton		3β Vinylic proton	
	Chemical shift	Coupling constant (Hz)	Chemical shift	Coupling constant (Hz)
E-14	6.40	15.8	6.92	15.9
Z-12	6.37	12.9	6.01	12.8

$3 \beta-\mathrm{H}$ resonance had no effect on the $2 \alpha-\mathrm{H}$ resonance. Since the NOE effect is only noticeable over short distances, generally 2-4 \AA, it is clear that the two protons (2α and 3β) are in the transposition.
Reaction of 11 with cis-3-chloroacrylic acid afforded compound $\mathbf{1 2}$ in the same Z configuration as the starting material. This configuration was established by a comparative NMR analysis of compounds $\mathbf{1 2}$ and $\mathbf{1 4}$. The chemical shifts and coupling constants for both compounds are given in Table 1.
The β vinylic hydrogen signal for compound $\mathbf{1 2}$ was shifted downfield to $\delta 6.9$; a smaller coupling constant for compound $\mathbf{1 2}$ indicated a Z configuration.
The NOE experiments were used to confirm the Z configuration of the compound 12. Irradiation of 2-H (δ 6.37) increased the integration for $3-\mathrm{H}$ (42\%) whilst irradiation of $3-\mathrm{H}$ ($\delta 6.01$) increased the integration for $2-\mathrm{H}(42 \%)$. The NOE effect observed in compound 12 indicated a short distance, $2-4 \AA$, between $2-\mathrm{H}$ and $3-\mathrm{H}$ which confirmed their cis disposition.
A proposed mechanism for the formation of this product is illustrated in Fig. $3 .{ }^{13}$

Fig. 3 Proposed mechanism for the preparation of compound 12

Compounds 15 and 17 were prepared by the reaction of compound 11 with methyl 2-(bromomethyl)acrylate and methyl 2-(bromomethyl)acrylic acid, respectively. It was thought that the complete hydrolysis of compounds $\mathbf{1 5}$ and 17 with TMSI would yield the corresponding difluorodihydroxybutanoic acid 16, via the tris(trimethylsilyl) phosphonate ester as intermediate. H owever the methyl ester 17 was not hydrolysed in this fashion and yielded compound 18 instead. The presence of the OM e group was evident from the N M R spectra, where it gave rise to a singlet at $\delta 3.63$ in the ${ }^{1} \mathrm{H}$ N M R spectrum and a singlet at $\delta 53.55$ in the ${ }^{13} \mathrm{C} N \mathrm{M}$ R spectrum.

The organic zinc compound $\mathbf{1 1}$ is relatively stable (days to months) at room temperature and reacts with a wide variety of electrophiles in the presence of a catalytic amount of cuprous bromide to give the corresponding difluoroalkylphosphonates in good yields as reported earlier. ${ }^{12,14} \mathrm{H}$ owever, the unexpected low yields in some of the target compounds may be a result of a hydrolysis side reaction of $\mathbf{1 1}$ with the starting acid compounds leading to the diethyl difluoromethylphosphonate 20 as a byproduct. When methyl acrylate was treated with compound 11 in order to verify the reactivity of the ester with the organic zinc reagent, there was no reaction even when the mixture was heated overnight in refluxing TH F.

Compound 21, another target compound because of its potential use in the shikimate pathway, is outlined in Scheme 2.

Scheme 2

Diethyl (difluoromethyl)phosphonate 20, prepared from diethyl phosphite 19 and chlorodifluoromethane, ${ }^{15}$ reacted with methyl pyruvate to yield compound 21, which was hydrolysed to compound 23 at $60^{\circ} \mathrm{C}$ in the presence of solvent (TH F, ether, DCM), over a period of 7 days. It was shown that the hydrolysis of the methyl ester was incomplete even after 3 weeks under reflux. The presence of the OM e group was confirmed by ${ }^{1} \mathrm{H}$ $N M R$ analysis in $D_{2} O$ which showed one singlet at approximately $\delta 3.87$.

A nother important reaction, the dehydration of compound 21 to give the corresponding olefin $\mathbf{2 2}$, which is an analogue of PEP, were unsuccessful. Thus, the method of H ofmann et al. ${ }^{16}$ for dehydration of a secondary alcohol led only to decomposition of alcohol 21. Conversion of the hydroxy group of $\mathbf{2 1}$ into a triflate or acetate, followed by elimination was investigated. Treatment of the alcohol with trifluoromethanesulfonic anhydride gave the triflate but it failed to undergo elimination.

Although Posner et al. ${ }^{17}$ used Woelm alumina at room temperature to effect high-yield dehydrosulfonation of both secondary cyclic and acyclic alcohols and primary sulfonate esters, attempted use of basic alumina (Brockman I) for the desired elimination resulted only in recovery of starting material after several days.

Other unsuccessful attempts to dehydrate the compound 21 to give the corresponding olefin 22 were as follows: dehydration by using DA ST, following the method described by Blackburn and K ent; ${ }^{18}$ reaction of the OH group of compound 21 with acetyl chloride or mesyl choride, and then elimination with a strong base (LDA, NaH or DBU); dehydration of com-
pound $\mathbf{2 1}$ using M artin Sulfurane dehydrating agent, bis[α, α bis(trifluoromethyl) benzenemethanolato]diphenylsulfur.

Experimental

M elting points were determined on a commercially available apparatus (Electrothermal melting point apparatus), or Büchi 510, and are uncorrected. Elemental microanalysis was carried out using a Carlo Erba 1106 Elemental A nalyser. Infrared spectra were recorded in the range of $4000-600 \mathrm{~cm}^{-1}$, using a Perkin-Elmer 1600 FT-IR spectrophotometer and peaks are reported ($v_{\text {max }}$) in wavenumbers (cm^{-1}). Spectra of liquid samples were taken as N ujol mulls, or in chloroform solution, as indicated.
${ }^{1} \mathrm{H}$ N M R Spectra were recorded on a JEOL GX FT-270 (270 MHz) spectrometer although, where indicated, a JEOL GX FT-400 (400 M Hz) spectrometer was used. ${ }^{13} \mathrm{C}$ N M R Spectra were recorded on a JEOL GX FT-270 spectrometer operating at 67.8 M Hz and using 90 and 135 DEPT pulse sequences to aid multiplicity determination. Chemical shifts (δ) are expressed in ppm downfield from internal tetramethylsilane (SiM e_{4}). M ass spectra were recorded using a VG A nalytical 7070 E instrument with a VG 2000 data system. Electron ionisation (EI) was produced using an ionising potential of 70 eV . Chemical ionisation (CI) was employed using isobutane as the reagent gas although, where indicated, ammonia was also used
All general reagents and solvents were purified and dried when required, using the methods described in D. D. Perrin, W. L. F. Armarego and D. R. Perrin, Purification of L aboratory Chemicals, Pergamon Press, Oxford, 1980.

D iethyl bromodifluoromethylphosphonate 10

This compound [$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.4(6 \mathrm{H}, \mathrm{t})$ and $\left.4.3-4.4(4 \mathrm{H}, \mathrm{m})\right]$ was prepared by the reaction in diethyl ether of triethyl phosphite and dibromodifluoromethane at room temperature. ${ }^{11}$

[(D iethoxyphosphinoyl)difluoromethyl zzinc bromide 11

This compound $\left[\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.4(6 \mathrm{H}, \mathrm{t})\right.$ and 4.2-4.3 ($4 \mathrm{H}, \mathrm{m}$)] was prepared by the reaction in dry THF of 10 with acidwashed zinc powder at $60^{\circ} \mathrm{C}$.

D iethyl (difluoromethyl)phosphonate 20

This compound $\left[\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.4(6 \mathrm{H}, \mathrm{t}), 4.2-4.3(4 \mathrm{H}, \mathrm{m})\right.$ and $5.9(1 \mathrm{H}, \mathrm{td})$] was prepared by the reaction in THF of diethyl phosphite with chlorodifluoromethane at $0^{\circ} \mathrm{C} .{ }^{15}$

M ethyl 4,4-difluoro-4-(diethoxyphosphinoyl)-2-methylenebutanoate 17

To the solution of [(diethoxyphosphinoyl)difluoromethyl]zinc bromide ($1800 \mathrm{mg}, 5.41 \mathrm{mmol}$) in dry THF ($6 \mathrm{~cm}^{3}$) was added a catalytic amount of cuprous bromide followed by methyl 2-(bromomethyl)acrylate ($1000 \mathrm{mg}, 5.6 \mathrm{mmol}$), added dropwise at room temperature. The mixture was stirred overnight after which it was filtered, poured into water ($10 \mathrm{~cm}^{3}$) and extracted with diethyl ether ($3 \times 10 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The product was purified using column chromatography on silica gel with ethyl acetate-light petroleum ($\mathrm{bp} 60-80^{\circ} \mathrm{C}$) $(3: 7)$ as the eluent to give the title compound ($757 \mathrm{mg}, 49 \%$); $\mathrm{R}_{\mathrm{F}} 0.48$ (light petroleum-ethyl acetate, 1:1) (Found: C, 42.1; H, 6.10. $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{C}, 42.0 ; \mathrm{H}, 6.0 \%$); $v_{\text {max }}$ (liquid film) $/ \mathrm{cm}^{-1}$ 3502, 2988, $1725(\mathrm{C}=\mathrm{O}), 1634\left(\mathrm{C}=\mathrm{CH}_{2}\right), 1274(\mathrm{P}=\mathrm{O})$ and 1042 $\left(\mathrm{OCH}_{3}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.39\left(\mathrm{t}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{J} 7.05\right), 3.09-3.25$ (td, $\mathrm{CF}_{2} \mathrm{CH}_{2}, \mathrm{~J}_{\mathrm{H}, \mathrm{F}} 19.64, \mathrm{~J}_{\mathrm{H}, \mathrm{P}} 4.76$), 3.79 (s, OCH_{3}), 4.29 ($\mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$), 5.89 (s , vinylic H) and 6.47 (s , vinylic H); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 1.62\left(\mathrm{~d}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{J} \mathrm{c}, \mathrm{p} 5.5\right), 34.89$ (td, $\mathrm{CF}_{2} \mathrm{CH}_{2}$, $\left.\mathrm{J}_{\mathrm{c}, \mathrm{F}} 21.15, \mathrm{~J}_{\mathrm{c}, \mathrm{p}} 16.53\right), 52.02\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 64.42\left(\mathrm{~d}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, $\mathrm{J}_{\mathrm{c}, \mathrm{p}} 7.3$), 118.79 (td, CF $\mathrm{Z}_{2} \mathrm{~J}_{\mathrm{c}, \mathrm{F}} 261.5$, J c,p 216.7), 131.15 (s , $\mathrm{C}=\mathrm{CH}_{2}$) and 166.45 ($\mathrm{s}, \mathrm{C}=0$); m/z (EI) $286\left(\mathrm{M}^{+}, 34 \%\right), 255$
(M^{+}- OM e, 25), 199 (58) and 109 (100); m/z (CI) $287\left(\mathrm{M} \mathrm{H}^{+}\right.$, 100\%).

4,4-D ifluoro-4-(diethoxyphosphinoyl)-2-methylenebutanoic acid

 15To a solution of [(diethoxyphosphinoyl)difluoromethyl]zinc bromide ($1200 \mathrm{mg}, 3.4 \mathrm{mmol}$) in dry THF ($6 \mathrm{~cm}^{3}$) was added a catalytic amount of cuprous bromide followed by 2-bromomethylacrylic acid ($600 \mathrm{mg}, 3.64 \mathrm{mmol}$). The mixture was stirred overnight at room temperature after which it was filtered, poured into water ($10 \mathrm{~cm}^{3}$) and extracted with diethyl ether ($3 \times 10 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The product was purified using column chromatography on silica gel with chloroformmethanol (98.5:1.5) as eluent, to give the title compound (769 $\mathrm{mg}, 83.2 \%$); $\mathrm{R}_{\mathrm{F}} 0.40\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 9: 1\right)$ (Found: C, $39.5 ; \mathrm{H}$, 5.6. $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{C}, 39.7 ; \mathrm{H}, 5.6 \%$); $v_{\text {max }}$ (liquid film)/ $\mathrm{cm}^{-1} 3498\left(\mathrm{CO}_{2} \mathrm{H}\right), 1725(\mathrm{C}=0), 1634\left(\mathrm{C}=\mathrm{CH}_{2}\right)$ and $1269(\mathrm{P}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.39\left(\mathrm{t}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{J} 7.08\right)$, 3.17 ($\mathrm{td}, \mathrm{CF}_{2} \mathrm{CH}_{2}, \mathrm{~J}_{\mathrm{H}, \mathrm{F}}$ 19.5, $\mathrm{J}_{\mathrm{H}, \mathrm{P}} 4.88$), 4.25-4.23 (m, CH3 $\mathrm{CH}_{2} \mathrm{OP}$), 5.98 (s , vinylic H) and 6.6 (s , vinylic H); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 16.2\left(\mathrm{~d}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{J} \mathrm{c}, \mathrm{p} 5.5\right)$, 34.6 (td, $\mathrm{CF}_{2} \mathrm{CH}_{2}, \mathrm{~J}_{\mathrm{c}, \mathrm{F}} 29.2, \mathrm{~J} \mathrm{c}, \mathrm{p} 16.5$), $64.8\left(\mathrm{~d}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{J}_{\mathrm{c}, \mathrm{p}}\right.$ 7.7), 118.1 (td, $\mathrm{CF}_{2}, \mathrm{~J}_{\mathrm{c}, \mathrm{F}} 261.1, \mathrm{~J}_{\mathrm{c}, \mathrm{p}} 217.1$), $133.0\left(\mathrm{~s}, \mathrm{C}=\mathrm{CH}_{2}\right.$) and 170.3 (s, C=O); m/z (CI) 273 ($\mathrm{M} \mathrm{H}^{+}, 100 \%$); m/z (EI) 272 (M ${ }^{+}$, $2 \%), 227\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{H}, 12\right), 201\left[\mathrm{M}^{+}-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CO}_{2} \mathrm{H}, 13\right], 199$ (50) and 109 (100).

4,4-D ifluoro-4-(phosphono)-2-methylenebutanoic acid 16

Compound 15 ($1200 \mathrm{mg}, 4.4 \mathrm{mmol}$) in dry THF ($100 \mathrm{~cm}^{3}$) was stirred with TM SI ($2100 \mathrm{mg}, 10.5 \mathrm{mmol}$), under N_{2} at room temperature for 6 h . The excess of silylating reagent and ethyl iodide were removed in vacuo to give the bis(trimethylsilyl)phosphonate esters, which were dissolved in diethyl ether (30 cm^{3}) and then treated with water ($20 \mathrm{~cm}^{3}$) to give the title compound $\mathbf{1 6}$ ($475 \mathrm{mg}, 50 \%$); this was purified by column chromatography ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 90: 10$); $\mathrm{R}_{\mathrm{F}} 0.33$ (chloroformmethanol, $1: 1), \mathrm{mp} 72^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{D}_{2} \mathrm{O}\right) / \mathrm{cm}^{-1} 3424,2527,1700$ $(\mathrm{C}=0), 1630(\mathrm{C}=\mathrm{C})$ and $1209(\mathrm{P}=0) ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 3.14\left(\mathrm{dt}, \mathrm{CF}_{2} \mathrm{CH}_{2}\right.$, $J_{\mathrm{H}, \mathrm{F}} 20.4, \mathrm{~J}_{\mathrm{H}, \mathrm{P}} 2.47$), 5.89 (s, vinylic H) and 6.34 (s, vinylic H); $\delta_{\mathrm{c}}\left(\mathrm{D}_{2} \mathrm{O}\right) 35.65\left[\mathrm{q}, \mathrm{CF}_{2} \mathrm{CH}_{2} \mathrm{C}\left(=\mathrm{CH}_{2}\right)\right.$, J $\left.{ }_{\mathrm{c}, \mathrm{p}} 21.5, \mathrm{~J}_{\mathrm{c}, \mathrm{F}} 36.9\right], 122.7$ ($\mathrm{td}, \mathrm{CF}_{2}, \mathrm{~J}_{\mathrm{c}, \mathrm{p}} 204.9, \mathrm{~J}_{\mathrm{c}, \mathrm{F}} 271.8$), $132.9\left(\mathrm{~s}, \mathrm{C}=\mathrm{CH}_{2}\right)$ and 171.8 (C=0); m/z (-ve FA B) 215 ($\mathrm{M} \mathrm{H}^{-}, 35 \%$), 197 (20), 177 (12) and 159 (10).

4,4-D ifluoro-4-(diethoxyphosphinoyl)-2-bromobutanoic acid 13

To a solution of [(diethoxyphosphinoyl)difluoromethyl]zinc bromide ($1304 \mathrm{mg}, 4.03 \mathrm{mmol}$) in dry TH F $\left(3 \mathrm{~cm}^{3}\right)$, was added a catalytic amount of cuprous iodide followed by 2-bromoacrylic acid ($700 \mathrm{mg}, 4.64 \mathrm{mmol}$) dissolved in dry THF ($3 \mathrm{~cm}^{3}$), added dropwise at room temperature. The mixture was stirred for 4 days after which it was filtered, poured into brine $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether ($3 \times 10 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The product was purified using column chromatography on silica gel with chloroform-methanol-acetic acid ($95: 4: 1$) as eluent to give the title compound ($450 \mathrm{mg}, 33 \%$); $\mathrm{R}_{\mathrm{F}} 0.46\left(\mathrm{CHCl}_{3}-\right.$ $\mathrm{MeOH}-\mathrm{AcOH}, 90: 8: 2)$ (Found: C, 28.6; H, 4.3. $\mathrm{C}_{8} \mathrm{H}_{14}{ }^{-}$ $\mathrm{BrF}_{2} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{C}, 28.3 ; \mathrm{H}, 4.2 \%$); $v_{\text {max }}\left(\right.$ liquid film) $/ \mathrm{cm}^{-1}$ $3459\left(\mathrm{CO}_{2} \mathrm{H}\right), 3057,2981,1739(\mathrm{C}=0)$) 1596, $1243(\mathrm{P}=0)$ and 1174; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.39$ ($\mathrm{t}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{J} 7.05$), 2.59-2.83 ($\mathrm{m}, \mathrm{CF}_{2} \mathrm{CHH}$), 3.09-3.34 ($\mathrm{m}, \mathrm{CF}_{2} \mathrm{CHH}$), 4.25-4.36 (m, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$) and 4.55 (dd, $\mathrm{CH}_{2} \mathrm{CHBr}, \mathrm{J}_{2,3 \mathrm{~b}} 4.39, \mathrm{~J}_{2,3 \mathrm{a}} 9.28$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 16.2\left(\mathrm{~d}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{J}_{\mathrm{c}, \mathrm{p}} 5.5\right), 34.9\left(\mathrm{~s}, \mathrm{CF}_{2} \mathrm{CH}_{2}{ }^{-}\right.$ CHBr), 39.3 (dd, $\mathrm{CF}_{2} \mathrm{CH}_{2} \mathrm{CHBr}, \mathrm{J}_{\mathrm{c}, \mathrm{F}} 36.35, \mathrm{~J}_{\mathrm{c}, \mathrm{p}} 19.85$), 65.5 (d, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{J}_{\mathrm{c}, \mathrm{p}} 8.9$), 118.7 (td, $\mathrm{CF}_{2}, \mathrm{~J}_{\mathrm{c}, \mathrm{p}} 219.2$) and 171.6 ($\mathrm{s}, \mathrm{C}=0$); $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)$ - 112.1 (dddd, J F, F 301.7, J f, P $105.2, \mathrm{~J}_{3 \mathrm{~b}, \mathrm{~F}} 25.4, \mathrm{~J}_{3 \mathrm{a}, \mathrm{F}} 12.7,1 \mathrm{~F}$) and -113.2 (dddd, Jf,F 301.7 , $\left.\mathrm{J}_{\mathrm{F}, \mathrm{P}} 105.7, \mathrm{~J}_{3 \mathrm{~b}, \mathrm{~F}} 25.5, \mathrm{~J}_{3 \mathrm{a}, \mathrm{F}} 11.6,1 \mathrm{~F}\right) ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 5.08\left(\mathrm{t},{ }^{1} \mathrm{H}\right.$ decoupled, $J_{\mathrm{P}, \mathrm{F}}$ 104; $\mathrm{m},{ }^{1} \mathrm{H}$ coupled, $\mathrm{J}_{\mathrm{P}, 3 \mathrm{a}}=\mathrm{J}_{\mathrm{P}, 3 \mathrm{~b}} 4.03$); m/z (CI)

339, $341\left(\mathrm{M} \mathrm{H}^{+}, 98 \%\right) 321,323\left(\mathrm{M}^{+}-\mathrm{OH}, 20\right)$ and 293, 295 $\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{H}, 7\right.$).
(E)-4,4-D ifluoro-4-(diethoxyphosphinoyl)but-2-enoic acid 14
To a solution of the butanoic acid 13 ($490 \mathrm{mg}, 1.44 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(6 \mathrm{~cm}^{3}\right)$ was added dropwise DBU (439 mg , 2.88 mmol) at $0^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature after which it was stirred overnight. The solution was then acidified to pH 2.0 with $\mathrm{KHSO}_{4}(0.5 \mathrm{~m})$, washed with brine and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A fter work-up the product was purified using column chromatography on silica gel with chloroform-methanol-acetic acid ($95: 4: 1$) as eluent to give the product as an amber liquid ($43.6 \mathrm{mg}, 12.5 \%$); $\mathrm{R}_{\mathrm{F}} 0.55\left(\mathrm{CHCl}_{3}-\right.$ $\mathrm{MeOH}-\mathrm{AcOH}, 90: 8: 2)$; $v_{\text {max }}\left(\mathrm{lliquid}\right.$ film)/ $\mathrm{cm}^{-1} 3423,2917$ $\left(\mathrm{CO}_{2} \mathrm{H}\right), 1722(\mathrm{C}=0), 1641(\mathrm{C}=\mathrm{C})$ and $1443,1260(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.38\left(\mathrm{t}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$, J 7.15), 4.23-4.36 (m, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$), $6.40\left(\mathrm{dq}, \mathrm{CF}_{2} \mathrm{CH}=\mathrm{CH}, \mathrm{J}_{2 u, 3 \beta} 15.8, \mathrm{~J}_{2 a, \mathrm{~F}} 5.31, \mathrm{~J}_{2 a, \mathrm{P}}\right.$ 2.57), 6.92 (dtd, $\mathrm{CF}_{2} \mathrm{CH}=\mathrm{CH} \mathrm{J}_{3 \beta, 2 \alpha} 15.8, \mathrm{~J}_{3 \beta, F} 12.7, \mathrm{~J}_{3 \beta, \mathrm{P}} 1.95$) and 9.99 (br s, $\mathrm{CO}_{2} \mathrm{H}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{J}_{\mathrm{c}, \mathrm{p}}\right.$ 5.5), 65.4 ($\mathrm{d}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{J}_{\mathrm{c}, \mathrm{p}} 6.6$), 117.9 (td, CF_{2}, J $\mathrm{J}_{1, \mathrm{~F}} 260.0$, $J_{c, p} 218.2$), $127.9\left(\mathrm{q}, \mathrm{CF}_{2} \mathrm{CH}=\mathrm{CH}, \mathrm{J}_{\mathrm{c}, \mathrm{p}}=\mathrm{J}_{\mathrm{c}, \mathrm{F}} 7.0\right.$), 136.3 (td, $\mathrm{CF}_{2} \mathrm{CH}=\mathrm{CH}, \mathrm{J} \mathrm{c}, \mathrm{p} 13.2, \mathrm{~J}_{\mathrm{c}, \mathrm{F}} 22.05$) and 167.6 ($\mathrm{s}, \mathrm{C}=0$); m/z (CI) $259\left(\mathrm{M} \mathrm{H}^{+}, 259.0547 . \mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{5} \mathrm{~F}_{2} \mathrm{P}\right.$ requires $\mathrm{M}, 259.0547,100 \%$) and $213\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{H}, 3\right)$.

(Z)-4,4-D ifluoro-4-(diethoxyphosphinoyl)but-2-enoic acid 12

To a solution of [(diethoxyphosphinoyl)difluoromethyl]zinc bromide ($1191 \mathrm{mg}, 3.58 \mathrm{mmol}$) in dry TH F ($6 \mathrm{~cm}^{3}$) was added, under N_{2}, a catalytic amount of cuprous bromide followed by cis-3-chloroacrylic acid ($382 \mathrm{mg}, 3.59 \mathrm{mmol}$). The mixture was stirred for 24 h at room temperature after which it was filtered, poured into brine ($10 \mathrm{~cm}^{3}$) and extracted with diethyl ether $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The product was purified using column chromatography on silica gel with chloroform-methanol-acetic acid ($95: 4: 1$) as eluent to give the title compound (924 mg , 20%); $\mathrm{R}_{\mathrm{F}} 0.35$ ($\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}-\mathrm{AcOH}, 90: 8: 2$) (Found: C , $37.2 ; \mathrm{H}, 5.4 . \mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{C}, 37.2 ; \mathrm{H}, 5.1 \%$); $v_{\text {max }}$ (liquid film)/ $\mathrm{cm}^{-1} 3417,2989\left(\mathrm{CO}_{2} \mathrm{H}\right), 2571,1731$ ($\mathrm{C}=0$) , 1657 ($\mathrm{C}=\mathrm{C}$), 1620, 1479, 1396 and $1254(\mathrm{P}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.41(\mathrm{t}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{J} 7.05$), 4.29-4.40 (m, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$), 6.01 (dtd, $\mathrm{CF}_{2} \mathrm{CH}=\mathrm{CH}, \mathrm{J}_{3 \beta, 2 \alpha} 12.8, \mathrm{~J}_{3 \beta, F} 12.7, \mathrm{~J}_{3 \beta, \mathrm{P}} 1.94$) and $6.37(\mathrm{dq}$, $\mathrm{CF}_{2} \mathrm{CH}=\mathrm{CH}, \mathrm{J}_{2 \alpha, 3 \mathrm{p}} 12.9, \mathrm{~J}_{2 \alpha, \mathrm{~F}} 2.47, \mathrm{~J}_{2 \alpha, \mathrm{P}} 2.47$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 16.2$ (d, CH $\mathrm{CH}_{3} \mathrm{CHP}_{2}$ J c,p 5.5), 66.2 (d, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{J}_{\mathrm{c}, \mathrm{p}} 6.6$), 116.1 (td, CF ${ }_{2}$, J $\mathrm{c}_{\mathrm{c}, \mathrm{F}} 261.7, \mathrm{~J}_{\mathrm{c}, \mathrm{p}} 214.9$), 126.9 (td, $\mathrm{CF}_{2} \mathrm{C} H=\mathrm{CH}, \mathrm{J}_{\mathrm{c}, \mathrm{p}}$ 13.6, J $\mathrm{c}, \mathrm{F} 23.9$), $129.9\left(\mathrm{q}, \mathrm{CF}_{2} \mathrm{CH}=\mathrm{CH}, J_{\mathrm{c}, \mathrm{p}}=J_{\mathrm{c}, \mathrm{F}} 7.2\right.$) and 166.1 (s, C=O); m/z (CI) $259\left(\mathrm{M} \mathrm{H}^{+}, 259.0547 . \mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{5} \mathrm{~F}_{2} \mathrm{P}\right.$ requires $\mathrm{M}, 259.0547,100 \%$), $241\left(\mathrm{M}^{+}-\mathrm{OH}, 35\right)$ and 213 $\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{H}, 20\right)$.

M ethyl [3,3-difluoro-3-(diethoxyphosphinoyl)-2-hydroxy-2methyl]propionate 21

A solution of butyllithium ($2.91 \mathrm{~cm}^{3}, 4.66 \mathrm{mmol}$) in hexane was added at $0^{\circ} \mathrm{C}$ to a stirred solution of diisopropylamine (472 mg , $4.66 \mathrm{mmol})$ in dry THF ($10 \mathrm{~cm}^{3}$), and the mixture was stirred for 30 min . It was then cooled to $-78^{\circ} \mathrm{C}$ and treated with a solution of diethyl difluoromethylphosphonate ($761 \mathrm{mg}, 4.05$ mmol) in dry THF ($10 \mathrm{~cm}^{3}$), pre-cooled to $-78^{\circ} \mathrm{C}$, added slowly. The mixture was then stirred for 1 h at $-78^{\circ} \mathrm{C}$. M ethyl pyruvate ($623 \mathrm{mg}, 6.1 \mathrm{mmol}$) in dry THF ($10 \mathrm{~cm}^{3}$), pre-cooled to $-78{ }^{\circ} \mathrm{C}$, was added dropwise to the mixture which was then stirred at $-78^{\circ} \mathrm{C}$ for 6 h , slowly warmed to room temperature, and then stirred for an additional 2 h . The reaction mixture was then poured into dry diethyl ether ($50 \mathrm{~cm}^{3}$) and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{CI}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The organic layer was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The product was purified using column chromatography on silica gel with ethyl acetate-light petroleum (bp $\left.60-80^{\circ} \mathrm{C}\right)(1: 1)$ as eluent, to give a colourless oil; $\mathrm{R}_{\mathrm{F}} 0.26$ (light petroleum-ethyl acetate, 1:1) (Found: C, 37.2; $\mathrm{H}, 6.1 . \mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{O}_{6}$ requires $\mathrm{C}, 37.2$;

H, 5.9%); $v_{\text {max }}$ (liquid film)/ $\mathrm{cm}^{-1} 3474,2990,1747$ ($\mathrm{C}=0$) , 1657, $1265(\mathrm{P}=\mathrm{O}), 1168,1022\left(\mathrm{OCH}_{3}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.38(\mathrm{t}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{J}_{\mathrm{H}, \mathrm{H}} 7.1\right), 1.62\left[\mathrm{t}, \mathrm{CF}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CH}_{3}, \mathrm{~J}_{\mathrm{H}, \mathrm{F}} 1.47\right], 3.87$ $\left(\mathrm{s}, \mathrm{OCH}_{3}\right), 4.01(\mathrm{~s}, \mathrm{OH})$ and $4.29\left(\mathrm{~m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right)$ 16.2 (d, CH $3_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{J} \mathrm{c}, \mathrm{p} 4.4$), $19.1\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 53.5\left(\mathrm{~s}, \mathrm{OCH}_{3}\right)$, 64.8 ($d, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{J}_{\mathrm{c}, \mathrm{p}} 6.6$), 117.7 (td, $\mathrm{CF}_{2}, \mathrm{~J}_{\mathrm{c}, \mathrm{F}} 274.3, \mathrm{~J}_{\mathrm{c}, \mathrm{p}}$ 207.1) and 171.9 (s, C=O); $\delta_{F}\left(\mathrm{CDCl}_{3}\right)-115.1$ (dd, J F,F $306.9, \mathrm{~J}_{\mathrm{F}, \mathrm{P}}$ 98.9, 1 F) and $-118.4\left(\mathrm{dd}, \mathrm{J}_{\mathrm{F}, \mathrm{F}} 306.9 \mathrm{~J}_{\mathrm{F}, \mathrm{P}} 102.3,1 \mathrm{~F}\right.$); $\delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 5.1\left(\mathrm{t},{ }^{1} \mathrm{H}\right.$ decoupled, J p, F 101.1; $\mathrm{m},{ }^{1} \mathrm{H}$ coupled, J ${ }_{\mathrm{p}, \mathrm{H}}$ 7.74); m/z (EI) 290 (${ }^{+}, 2 \%$), 231 (${ }^{+}-\mathrm{CO}_{2} \mathrm{Me}$ e 68), 187 (95) and $175(100) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 291\left(\mathrm{M} \mathrm{H}^{+}, 100 \%\right)$.

3,3-D ifluoro-3-phosphono-2-hydroxy-2-methylpropionic acid 23

 The ester 21 ($1006 \mathrm{mg}, 0.3466 \mathrm{mmol}$) was stirred with TM SI in excess $\left(30 \mathrm{~cm}^{3}\right)$ without solvent at room temperature for 2 days and then heated to $60^{\circ} \mathrm{C}$ for 5 days. The excess of silylating reagent and ethyl iodide were removed under reduced pressure to give the trisilylated ester. This was dissolved in diethyl ether $\left(50 \mathrm{~cm}^{3}\right)$ and hydrolysed with water ($3 \times 20 \mathrm{~cm}^{3}$), to give a viscous brown product ($76 \mathrm{mg}, 100 \%$); $v_{\text {max }}\left(\mathrm{D}_{2} \mathrm{O}\right) / \mathrm{cm}^{-1} 3416$, 2518, $1724(\mathrm{C}=0), 1451,1209(\mathrm{P}=0)$ and 1084; $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 1.44(\mathrm{~s}$, CH_{3}); $\delta_{\mathrm{c}}\left(\mathrm{D}_{2} \mathrm{O}\right) 19.0\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 118.4\left(\mathrm{td}, \mathrm{CF}_{2}, \mathrm{~J}_{\mathrm{c}, \mathrm{F}} 269.9, \mathrm{~J}_{\mathrm{c}, \mathrm{p}}\right.$ 191.4) and 173.8 (s, C=0); m/z (+veFA B) $221\left(\mathrm{M} \mathrm{H}^{+}, 100 \%\right), 175$ $\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{H}, 65\right), 149$ (20) and $91(60) ; \mathrm{m} / \mathrm{z}(-\mathrm{ve} \mathrm{FAB}) 219$ ($\mathrm{MH}^{-}, 218.9861 . \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~F}_{2} \mathrm{O}_{6} \mathrm{P}$ requires $\mathrm{M} \mathrm{H}^{-}, 218.9870,100 \%$).
References

1 S. F. M artin, D. W. Dean and A. S. Wagman, Tetrahedron Lett., 1992, 33, 1839.
2 J. Nieschalk, A. S. Batsanov, D. O'H agan and J. A. K. H oward, Tetrahedron, 1996, 52, 165.
3 S. Halazy, A. Ehrard, A. Eggenspiller, V. Berges-G ross and C. D anzin, Tetrahedron, 1996, 52, 177.

4 Bien Ye and T. R . Burke, J r., Tetrahedron, 1996, 52, 9963.
5 M. M. Campbell, M. Sainsbury and P. A. Searle, Synthesis, 1993, 179.

6 K. S. Anderson, J. A. Sikorski and K. A. Johnson, Biochemistry, 1988, 27, 1604
7 P. D. Pansegrau, K. S. A nderson, T. Widlanski, J. E. Ream, R . D. Sammons, J. A . Sikorski and J. R . K nowles, Tetrahedron L ett., 1991, 32, 2589.
8 M . C. Walker and C. R . Jones, J. A m. Chem. Soc., 1992, 14, 7601.
9 D. P. Philion and D. G. Cleary, J. Org. Chem., 1992, 57, 2763.
10 A. R adzicka and R. Wolfenden, B iochemistry, 1991, 30, 4160.
11 D. J. Burton and R . M . Flynn, J. Fluorine C hem., 1977, 10, 329.
12 D. J. Burton, T. I shiara and M. M urata, Chem. Lett., 1982, 755.
13 A. C. Cope and W. G. D auben, 0 rg. React., 1992, 41, 135.
14 D. J. Burton and L. G. Sprague, J. Org. C hem., 1989, 54, 613.
15 D. E. Bergstrom and P. W. Shum, J. Org. Chem., 1988, 53, 3953.
16 R. V. H ofmann, R. D. Bishop, P. M . Fitch and R. Hardenstein, J. Org. Chem., 1980, 45, 919.

17 G. H. Posner, G. M. G unia and K. A. Babiak, J. Org. Chem., 1977, 42, 3173.
18 G. M. Blackburn and D. E. K ent, J. Chem. Soc., Perkin Trans. 1, 1986, 913.

Acknowledgements

We thank CNPq Conselho Nacional de Desenvolvimento Cientifico e Tecnologico for the financial support of this work.

Paper 6/03094G
Received 2nd M ay 1996
A ccepted 15th N ovember 1996
© Copyright 1997 by the Royal Society of Chemistry

